Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Public Health ; 10: 834592, 2022.
Article in English | MEDLINE | ID: covidwho-1952773

ABSTRACT

In Ethiopia, multiple waves of the COVID-19 epidemic have been observed. So far, no studies have investigated the characteristics of the waves of epidemic waves in the country. Identifying the epidemic trend in Ethiopia will inform future prevention and control of COVID-19. This study aims to identify the early indicators and the characteristics of multiple waves of the COVID-19 epidemics and their impact on the overall epidemic size in Ethiopia. We employed the Jointpoint software to identify key epidemic characteristics in the early phase of the COVID-19 epidemic and a simple logistic growth model to identify epidemic characteristics of its subsequent waves. Among the first 100 reported cases in Ethiopia, we identified a slow-growing phase (0.37 [CI: 0.10-0.78] cases/day), which was followed by a fast-growing phase (1.18 [0.50-2.00] cases/day). The average turning point from slow to fast-growing phase was at 18 days after first reported. We identified two subsequent waves of COVID-19 in Ethiopia during 03/2020-04/2021. We estimated the number of COVID-19 cases that occurred during the second wave (157,064 cases) was >2 times more than the first (60,016 cases). The second wave's duration was longer than the first (116 vs. 96 days). As of April 30th, 2021, the overall epidemic size in Ethiopia was 794/100,000, ranging from 1,669/100,000 in the Harari region to 40/100,000 in the Somali region. The epidemic size was significantly and positively correlated with the day of the phase turning point (r = 0.750, P = 0.008), the estimated number of cases in wave one (r = 0.854, P < 0.001), and wave two (r = 0.880, P < 0.001). The second wave of COVID-19 in Ethiopia is far greater, and its duration is longer than the first. Early phase turning point and case numbers in the subsequent waves predict its overall epidemic size.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Ethiopia/epidemiology , Humans
2.
Int J Infect Dis ; 97: 219-224, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-636709

ABSTRACT

OBJECTIVES: The mostly-resolved first wave of the COVID-19 epidemic in China provided a unique opportunity to investigate how the initial characteristics of the COVID-19 outbreak predict its subsequent magnitude. METHODS: We collected publicly available COVID-19 epidemiological data from 436 Chinese cities from 16th January-15th March 2020. Based on 45 cities that reported >100 confirmed cases, we examined the correlation between early-stage epidemic characteristics and subsequent epidemic magnitude. RESULTS: We identified a transition point from a slow- to a fast-growing phase for COVID-19 at 5.5 (95% CI, 4.6-6.4) days after the first report, and 30 confirmed cases marked a critical threshold for this transition. The average time for the number of confirmed cases to increase from 30 to 100 (time from 30-to-100) was 6.6 (5.3-7.9) days, and the average case-fatality rate in the first 100 confirmed cases (CFR-100) was 0.8% (0.2-1.4%). The subsequent epidemic size per million population was significantly associated with both of these indicators. We predicted a ranking of epidemic size in the cities based on these two indicators and found it highly correlated with the actual classification of epidemic size. CONCLUSIONS: Early epidemic characteristics are important indicators for the size of the entire epidemic.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Cities/epidemiology , Disease Outbreaks , Epidemics , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL